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a b s t r a c t

In recent years, the application of convolutional neural networks (CNNs) and graph convolutional
networks (GCNs) in hyperspectral image classification (HSIC) has achieved remarkable results. How-
ever, the limited label samples are still a major challenge when using CNN and GCN to classify
hyperspectral images. In order to alleviate this problem, a double branch fusion network of CNN and
enhanced graph attention network (CEGAT) based on key sample selection strategy is proposed. First,
a linear discrimination of spectral inter-class slices (LD_SICS) module is designed to eliminate spectral
redundancy of HSIs. Then, a spatial spectral correlation attention (SSCA) module is proposed, which
can extract and assign attention weight to the spatial and spectral correlation features. On the graph
attention (GAT) branch, the HSI is segmented into some super pixels as input to reduce the amount
of network parameters. In addition, an enhanced graph attention (EGAT) module is constructed to
enhance the relationship between nodes. Finally, a key sample selection (KSS) strategy is proposed to
enable the network to achieve better classification performance with few labeled samples. Compared
with other state-of-the-art methods, CEGAT has better classification performance under limited label
samples.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Different from ordinary images, hyperspectral images (HSIs)
not only have rich spatial texture information, but also each pixel
of HSIs contains hundreds of continuous spectral bands (Wang,
Yan, Mu and Huang, 2020; Zhang & Zhang, 2022). This provides a
strong guarantee for HSIs to be able to classify at the pixel level.
In recent years, HSIs have been widely used in medical, national
defense, agriculture and other fields (Wan, Fan, & Jin, 2021; Wang,
Yang and Zhang, 2020; Xing et al., 2019; Yu, Kong, Wang, Liu, &
Liu, 2020; Zhang, Song, Du, & Zhang, 2021). All these applications
need to be based on the accurate classification of HSIs.

In order to achieve accurate classification of HSIs, a number
of excellent methods have emerged. In the early days, some
methods based on machine learning were proposed. For exam-
ple, sparse representation classification (SRC) (Chen, Nasrabadi,
& Tran, 2010) and kernel support vector machine (KSVM) (Kuo,
Ho, Li, Hung, & Taur, 2014). The former pays more attention to
sparse feature representation learning, while the latter pays more
attention to classifier design. They are all methods based on pixel
classification, but only focus on spectral information, ignoring the
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importance of spatial information, so that the performance of hy-
perspectral image classification is limited. In addition, traditional
machine learning relies on manual features and parameter ex-
perience (Yaling, Xiwu, Hui, & Yurong, 2021), which makes such
classification methods less robust and generalization. In recent
years, the excellent performance of deep learning (DL) in hyper-
spectral image classification (HSIC) task has attracted extensive
attention (Li et al., 2019). Deep learning avoids the complicated
manual feature process of machine learning, and can extract the
features of samples for classification by training a part of samples.
Among them, the performances of convolutional neural networks
(CNNs) and graph convolutional networks (GCNs) (Ahmad et al.,
2022) are particularly impressive.

In the past few decades, CNNs have been one of the most
widely used methods in HSIC. For example, in order to make
full use of the spatial spectral information of HSIs, a spectral
spatial residual network (SSRN) was proposed (Zhong, Li, Luo, &
Chapman, 2018). SSRN uses 3-D convolution kernel (Ying, Zhang,
& Qiang, 2017) as a feature extraction tool, which can adapt to
the three-dimensional data structure of HSIs and directly extract
spatial spectral features. In addition, SSRN uses residual structure
to connect the network, which can expand the depth of the
network. Subsequently, a fast dense spectral spatial convolution
(FDSSC) was proposed (Wang, Dou, Jiang, & Sun, 2018) to further
extract the deep information of HSIs. Similar to SSRN, FDSSC
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also uses 3-D convolution kernel to directly extract the spatial
spectral information of HSIs. The difference is that FDSSC uses
a dense connection structure and can reuse the same feature.
However, this method requires a large number of calculations
and parameters, which is not friendly to conventional computing
resources and is not easy to be widely used in practice. Therefore,
a stepwise quantization method is proposed (Mei, Chen, Zhang,
Li and Plaza, 2022). Although this method is slightly insufficient
in classification accuracy, it can save a lot of calculation costs
and is more conducive to wide application. In addition, the small
sample problem is also a major challenge in CNN. The method
proposed in Zhang et al. (2023) has brought some inspiration to
alleviate this problem. In recent years, an attention mechanism
has been developed based on human vision (Haut, Paoletti, Plaza,
Plaza, & Li, 2019; Mei et al., 2019; Sun, Zheng, Lu, & Wu, 2020;
Woo, Park, Lee, & Kweon, 2018; Zheng, Wang, Du and Lu, 2022).
The attention mechanism can extract features with more discrim-
inating ability, avoiding the interference of irrelevant features on
classification. In Ma, Yang, Wu, Zhao, and Zhang (2019), a double
branch multi attention (DBMA) network was proposed. In order
to avoid the interaction between spectral and spatial features,
DBMA uses double branch structure to extract spatial spectral
features respectively. In addition, different attention is used on
the two branches. In order to further improve the accuracy of
HSIC, a double branch dual attention (DBDA) method was pro-
posed (Li, Zheng, Duan, Yang, & Wang, 2020). Compared with
DBMA, DBDA achieves higher classification accuracy with fewer
parameters. However, in CNN based attention networks, the size
of convolutional kernel is extremely sensitive to spatial rotation.
Therefore, a rotation invariant attention network (RIA) was pro-
posed (Zheng, Sun, Lu and Xie, 2022). RIA can extract rotation
invariant spatial spectral features, which alleviates the impact of
convolution size on classification results. In order to explore the
pre and post dependence of spectral bands, in Mei, Li, Liu, Cai
and Du (2022), a bidirectional long short-term memory (Bi-LSTM)
network based on attention is proposed, which further improves
the accuracy of HSIC. Although CNN based methods have achieved
some gratifying results, there are still some bottlenecks in the
classification of hyperspectral images. Including:

(1) Using regular convolution kernels to extract the features
of HSIs with complex ground distribution tends to weaken
the context dependency, thereby limiting the classification
performance of the network.

(2) CNNs can only process Euclidean space data effectively,
ignoring the internal correlation between ground objects
in HSIs.

(3) The classification performance of CNNs for HSIs still de-
pends on a large number of labeled training samples.

In recent years, with the rise of GCNs, these problems have
been alleviated to some extent. GCNs can directly handle the
graph structure, and can better capture the internal relationship
between adjacent objects of HSIs. For example, in Mou, Lu, Li, and
Zhu (2020), a non local graph convolution (nonlocal GCN) was
proposed. This method directly processes the entire hyperspectral
image using graph convolution to capture non local features of
the hyperspectral image and model the internal relationships
between ground objects. However, the method based on GCNs
also has some shortcomings. First of all, directly using each pixel
of the whole image as a graph node requires a lot of calculations.
Secondly, the weight between adjacent nodes in conventional
GCNs is fixed, which greatly limits the classification performance
of the network. In order to avoid using each pixel of the HSI as the
input node directly, resulting in excessive network computation,
some superpixel based GCN methods have been proposed. For
example, a multiscale dynamic graph convolution (MDGCN) was

proposed in Wan et al. (2020). It uses simple linear iterative
clustering (SLIC) to segment HSI into superpixels and use them
as input nodes for GCN. Specifically, in Wan et al. (2020), multi-
scale SLIC were used to segment hyperspectral images to obtain
multi-scale feature information of HSI. In addition, some graph
attentional network (GAT) based methods have been proposed to
dynamically update node features. In Wang, Wang, Tan and Tan
(2020), a spectral pyramid graph attention network is proposed.
spectral pyramid have been used to encode contextual infor-
mation of spectra and have achieved good classification results.
In Sha, Wang, Wu, and Zhang (2021) and Zhao, Wang, and Yu
(2021), GAT is used for semi-supervised classification. And they
are all classified by assigning different weights to spatial spectral
features through attention. Subsequently, in order to further im-
prove the classification accuracy of HSIs. Some methods utilize a
hybrid framework of GCN and CNN to extract pixel level and su-
perpixel features. A CNN enhanced GCN (CEGCN) is proposed (Liu,
Xiao, Yang, & Wei, 2021). First, HSI is segmented and encoded into
a graph structure through simple linear iterative clustering (SLIC),
and then GCN is used to capture the super pixel level features of
HSI, and combined with the pixel level features extracted by CNN.
Under the premise of ensuring the classification performance,
the network parameters are greatly reduced. Subsequently, the
weighted feature fusion of convolutional neural network and
graph attentional network (WFCG) is proposed (Dong, Liu, Du,
& Zhang, 2022). Different weights are given to nodes through
graph attentional network (GAT) and updated through training. In
addition, considering the interference of redundant pixels on GCN
classification performance, a spatial pooling graph convolutional
network (SPGCN) was proposed in Zhang et al. (2022). SPGCN has
developed a spatial pooling method and used GCN to extract the
spatial topological features of HSI, and SPGCN has been proved to
be superior to some CNNs based methods.

Although these methods have alleviated some problems of
CNNs and GCNs, there are still some challenges. Among them,
the problem of small sample is still prominent. With limited
label samples, the precision of HSIC will still be greatly limited.
Therefore, in this paper, a fusion network of CNN and enhanced
GAT (CEGAT) is proposed. Specifically, in order to avoid the in-
terference of redundant information, a linear discrimination of
spectral inter class slices (LD_SICS) module is first designed to
eliminate the spectral redundant information and map the feature
information to the low dimensional space, which is conducive
to subsequent feature extraction. Then, a dual branch network
framework integrating GAT and CNN was proposed. Among them,
an enhanced graph attention network (EGAT) module is con-
structed to enhance the representation ability of GAT. In ad-
dition, in order to extract pixel level spatial spectral features
with more discriminative ability and reduce the computational
complexity of the network, a spatial spectral correlation attention
(SSCA) module is proposed. In order to make full use of the
feature information of HSI, this paper adopts the structure of
super pixel coding graph and uses CNN to extract pixel level
spatial spectral features. Finally, a key sample selection (KSS)
strategy is proposed, which can effectively improve the accuracy
of classification.

The main contributions of this paper include the following
three parts:

(1) To enhance the attention capacity of the GAT, an EGAT
module was proposed. Through the enhancement of GAT,
the network can capture the node features with more
discriminating ability in HSI, which improves the feature
expression ability of the network.

(2) In order to capture the pixel level spatial spectral features
of HSIs, a SSCA module is designed. SSCA module can
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Fig. 1. The overall framework of CEGAT. (Where, M is the mapping matrix of the construction node. A is the adjacent edge matrix. U+ means adding samples
selected by KSS to the training set.)

reduce the information loss during feature extraction, and
effectively capture important features with more discrim-
inating ability. In addition, the SSCA module can reduce
the computational complexity of the network to a certain
extent.

(3) A KSS strategy is proposed. By iteratively selecting unla-
beled samples that are more difficult to distinguish from
the sample pool, KSS adds them to the training, thus im-
proving the discriminative ability of the model. This effec-
tively alleviates the sensitivity of the network to the small
sample problem.

The rest of this paper is arranged as follows: In Section 2,
the CEGAT is discussed in detail. Section 3 first introduces the
datasets used in the experiment and the experimental parameter
settings, then conducts some ablation experiments with the pro-
posed module, and finally verifies the effectiveness of CEGAT. In
Section 4, the conclusions are given.

2. Methodology

In order to mitigate the impact of small samples on the clas-
sification performance of HSIs, an effective CEGAT is proposed
in this paper. First, the HSI data set is divided into training set,
verification set and testing set, which can be recorded as xt ∈

Rh×w×b, xy ∈ Rh×w×b and xte ∈ Rh×w×b in turn. Where h, w

and b represent the height, width and number of spectral bands,
respectively.

2.1. The overall structure of CEGAT

The overall structure of CEGAT is shown in Fig. 1. The whole
process can be divided into seven parts. First, the original HSI is
divided into training set, verification set and testing set by ran-
dom selecting sampling. In particular, the samples in the training
set were randomly selected from each category with predeter-
mined ratio. Next, a LD_SICS module is designed to eliminate
the spectral redundancy information of training samples, and to
project the spectral information into a low dimensional space

more conducive to discrimination. This process can be expressed
as

Xin =LDA (sice2−1 (C .V (Norm (sice1−1 (T (xt)))))) xt ∈ Rh×w×b

Xin ∈ Rh×w×b′

(1)

where, T (·) means flattening the spatial dimension of the training
set. sice1−1 (·) is to slice the continuous spectral bands, and
sice2−1 (·) is to slice the coefficient of variation of spectral bands.
Norm (·) is the normalized function. C .V (·) represents the op-
eration of calculating the coefficient of variation. LDA (·) is a
linear discriminate function. Xin represents the data after remov-
ing the spectral redundancy information. LD_SICS is based on our
previous work (Shi, Wu, & Wang, 2023) using linear discrimi-
nant analysis (LDA). Specifically, LD_ SICS first slices the spectral
bands, then calculates their coefficients of variation and compares
them, and uses slices to preserve discriminative spectral bands
(i.e., spectral bands with high coefficient of variation). Finally,
the linear discriminate function is used to project the spectral
information into a lower dimensional space that is easier to
distinguish.

GAT directly acts on the graph. If the whole HSI is directly
used as the input, the network will generate a large number of
parameters, thus reducing the convergence speed of the network.
Therefore, in the step 3, Xin is divided into different super pixel
blocks using SLIC. In addition, in order to establish a close re-
lationship between the super pixel level features extracted by
GAT and the pixel level features extracted by CNN, an encoding
method in Liu et al. (2021) is adopted to construct graph structure
G = (XV , A), where XV is the node of the graph and A ∈ RN×N

is the adjacency matrix. First, the vertex features of the graph
are constructed through a mapping matrix M ∈ R(h×w)×N . This
process can be represented as

XV = M × Flatten (LR (B (F (Xin)))) XV ∈ RN×C (2)

where, F (·) is the two-dimensional convolution kernel of 1 × 1,
and its channel number is C . B (·) is the batch normalization
function. LR (·) is the activation function LeakyRelu. Flatten (·)
represents the operation of flattening the spatial dimension. In
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particular, the construction process of mapping matrix M ∈

R(h×w)×N can be expressed as

M(i,j) =

{
1, Flatten (LR (B (F (Xin))))i ∈ Hj
0, other (3)

where, M(i,j) represents the element in row i and column j of
M . Flatten (LR (B (F (Xin))))i represents the feature value of the
ith pixel, and Hj represents the jth super pixel. In addition, the
encoding of the adjacency matrix A ∈ RN×N can be expressed as

A(i,j) =

{
1,Hj andHi are adjancent
0, other (4)

where, A(i,j) represents the element in row i and column j of
A. Hi is the ith super pixel. After coding, go to step 4. EGAT
captures image features of the super pixel level and performs the
inverse transform through the decoder, which is more conducive
to feature fusion at the final stage. In the step 5, pixel-level spatial
spectral features are extracted by the CNN branch. Specifically,
on the CNN branch, an SSCA module is proposed. By using the
SSCA module, the information loss during the feature extrac-
tion process can be reduced, and important features with higher
recognition ability can be effectively captured. In addition, the
computational complexity of the network can be reduced to a
certain extent. And then the features extracted from the two
branches are fused. Then, the early stop mechanism is used to
judge whether the model is pre convergent, and the step 6 is
carried out when the model is pre convergent. In the step 6,
the KSS strategy is proposed to select unlabeled samples that are
difficult to distinguish in the validation set and add them to the
training set for training again. Finally, classify in step 7.

2.2. EGAT module

Conventional GCNs deal with graph structure in a way that it is
difficult to assign different weights to nodes, which greatly limits
the representation ability of the network. To solve this problem,
this paper proposes an EGAT module, which structure is shown
in Fig. 2. EGAT captures the important features of the graph by
enhancing the discriminate ability of features, so as to enhance
the representation ability of the network. Specifically, the vector
set of node features can be expressed as

XV =

{
X⃗V1, X⃗V2, . . . , X⃗VN

}
X⃗Vi ∈ RC (5)

In order to improve the representation ability of features, each
node vector is linearly transformed and the attention correla-
tion coefficient between nodes is calculated. This process can be
expressed as

Xeij = Atten
(
WX⃗Vi,WX⃗Vj

)
(6)

where, Xeij is the obtained attention correlation coefficient, which
represents the correlation between node X⃗Vi and X⃗Vj. W repre-
sents a linear transformation operation. A (·) indicates a shared
attention mechanism. In particular, in order to avoid breaking
the structural features of the graph and reduce the computational
complexity, only the first order attention is focused here (i.e. at-
tention between first-order adjacent nodes). In order to enhance
the ability of distinguishing features, two groups of Xeij are calcu-
lated and the values of attention coefficient are mapped to 0–1.
Then, the two groups of attention coefficients are multiplied to
get X ′

eij. After summation by column, divide by the number of
features each node C to obtain the normalization coefficient ϖ0
after attention enhancement. Finally, we divide X ′

eij by ϖ0. This
process can be expressed as

X ′

eij = sigmoid1
(
Xeij

)
× sigmoid2

(
Xeij

)
(7)

X ′′

eij =
X ′

eij

SUM−1
(
X ′

eij

)
/C

(8)

In Eq. (7), sigmoid1
(
Xeij

)
and sigmoid1

(
Xeij

)
represent two

groups of normalized attention coefficients respectively. In Eq. (8),
SUM−1 (·) represents the operation of summing by column. X ′′

eij
is the final enhanced attention coefficient. Then the attention
weights of different nodes are obtained through soft max. The
whole process can be expressed as

Xatt = softamx
(
X ′′

eij

)
=

exp
(
X ′′

eij

)∑
k∈Ni

exp
(
X ′′

eik

) (9)

where Ni is the neighbor set of the ith node. Xatt represents the
final enhanced attention weight. In order to output attention
stably, a multi head mechanism is added to EGAT. Specifically,
the attention weight Xatt obtained is embedded into the node
features, and then the process is repeated n times, and then the
results obtained n times are connected to obtain the n header
EGAT. This process can be expressed as

XEGAT =∥
n
1 σ (XattWXV ) (10)

where, ∥ is the connection operation. σ (·) is a nonlinear layer
function, and XEGAT represents the output result of EGAT.

In the proposed CEGAT network, two layers of EGAT are used
to extract super pixel level features. On the whole, EGAT can cap-
ture more important node features and suppress the interference
of redundant features by strengthening the conventional GAT
and using the correlation of first-order adjacent nodes without
destroying the structural features of the graph.

2.3. SSCA module

There is a lot of spectral redundancy information in HSIs.
Although the proposed CEGAT has passed the LD_ SICS eliminates
most of the spectral redundancy, but there will still be some
redundant information in the process of feature extraction. This
problem can be further alleviated by extracting the spatial spec-
tral correlation features of HSIs. Inspired by Zhong, Li, Ma, Li, and
Zheng (2022), a novel SSCA module was designed. As shown in
Fig. 3, first represent the input data as X ′

in ∈ RC×H×W and flatten
its spatial dimension. In addition, in order to reduce information
loss, SSCA directly uses linear transformation to build higher level
features. The calculation process of linear transformation can be
expressed as

K = [WK
(
reshape

(
X ′

in

))
]
T X ′

in ∈ RC×H×W K ∈ RS×C (11)

Q = WQ
(
reshape

(
X ′

in

))
X ′

in ∈ RC×H×W Q ∈ RC×S (12)

V = WV
(
reshape

(
X ′

in

))
X ′

in ∈ RC×H×W V ∈ RC×S (13)

where, S = H×W . WK (·), WQ (·) and WV (·) are three linear layer
functions respectively. Subsequently, in order to reduce the com-
putational complexity of the network, and establish the spatial
and spectral correlation. We use multi-scale pyramid pooling (He,
Zhang, Ren, & Sun, 2015) to deal with K ∈ RS×C and V ∈ RC×S .
This process can be expressed as

K ′
= [AAP1 (K ) ∥ AAP2 (K ) ∥ AAP4 (K ) ∥ AAP8 (K )] (14)

V ′
= [AAP1 (V ) ∥ AAP2 (V ) ∥ AAP4 (V ) ∥ AAP8 (V )] (15)

Here, AAP1 (·), AAP2 (·), AAP4 (·), and AAP8 (·) represent adap-
tive average pooling with size 1, 2, 4, and 8, respectively. Then,
the correlation between K ′ and Q is used to calculate the atten-
tion mask of spatial spectral correlation. The process is

SSA = Soft max−1
(
K ′

× Q
)

SSA ∈ RS×15 (16)
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Fig. 2. EGAT module. (Where represents the activation function. represents the multiplication operation.)

Fig. 3. SSCA module. (AAP (1), AAP (2), AAP (4) and AAP (8) represent the adaptive average pooling of sizes 1, 2, 4 and 8, respectively.)

where, Soft max−1 (·) represents Softmax operations by column.
Finally, the attention mask of spatial spectral correlation is used
to weight V ′ to obtain the attention feature map. In addition,
residual connection is introduced in SSCA to prevent network
over fitting. The calculation of SSCA module can be simplified as

XCNN = V ′
× SSA + reshape

(
X ′

in

)
(17)

In a word, the spatial and spectral information can be corre-
lated through the multi-scale pooling of SSCA module, and the
information loss in the feature extraction process is reduced. In
addition, compared with the method in Zhong et al. (2022) which
directly uses K ∈ RS×C and Q ∈ RC×S dot product to calculate the
attention mask, the SSCA proposed in this paper can effectively
reduce the computational complexity of the network. Specifically,
the complexity of SSCA can be expressed as

O = o1
(
S × C2

× 15
)
+ o2

(
S × C × 152) (18)

The computational complexity of directly multiplying K ∈

RS×C and Q ∈ RC×S points can be expressed as

O′
= o1

(
S2 × C2)

+ o2
(
S3 × C

)
(19)

where, o1 and o2 are the computational complexity of the at-
tention mask and the computational complexity of the attention
feature map, respectively. Obviously, the computational complex-
ity of the attention mask is reduced by S/15 times through SSCA.
And the computational complexity of attention feature map is
reduced by S2/152 times.

2.4. KSS module

The influence of small samples has always been the main
bottleneck limiting the improvement of hyperspectral image clas-
sification performance. Because the feature information that can
be extracted by the network is limited under the limited label
training samples, which will directly affect the final classification
accuracy. In addition, each sample contains different amount
of discriminate feature information. Therefore, the training set
consisting of randomly selected samples will also have a large
difference in the amount of feature information. This will make
the classification accuracy of the network through training fluc-
tuate greatly, which affects the stability of the network. In order
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Fig. 4. The process of the KSS strategy.

to alleviate this problem, a KSS strategy is proposed in this paper.
The processing of the KSS strategy is shown in Fig. 4.

First, take an epoch as an example, as shown in the left part of
the dotted line in Fig. 4. The training set xt ∈ Rh×w×b is trained by
the proposed CEGAT, and the model parameters are saved. Then
the saved model parameters are used by the network to verify
set xy ∈ Rh×w×b. After the verification, the network will judge
whether the training is over (i.e. epoch = 600). If the training is
not completed, the index of 10 more discriminative key samples
in the validation samples are selected by CEGAT and saved to set
U . Where, U is the set of sample indexes selected by the KSS
strategy from the validation set. In particular, the 10 key samples
selected here refer to the 10 samples with the largest verification
loss. (In this article, these samples with high validation losses are
considered key samples. Samples with high validation losses have
some features that cannot be recognized by the current network.
This also means that these samples have greater uncertainty and
therefore contain more feature information.) Then, the network is
judged whether it has pre converged according to the preset early
stop criterion. In particular, the pre-convergence here means that
the network reaches the early stop condition. In addition, the
pre-set early stop criterion is to verify that the loss value does
not decrease for 10 consecutive times. If the network does not
pre-converge, CEGAT will continue to execute the next epoch.
Otherwise, CEGAT will first select the unlabeled samples corre-
sponding to the index in U from xy ∈ Rh×w×b and add them to the
training set. Then select the same number of unlabeled samples
from xte ∈ Rh×w×b to add to the verification set. Finally, continue
to execute the next epoch. In particular, after the network model
has been judged to have had a pre convergence, it will not be
judged whether it has had pre convergence. As shown in the
right part of the dotted line in Fig. 4, after updating the set U ,
CEGAT will determine whether the number of iterations of the
KSS has reached or exceeded i. If the number of iterations has
reached i, the next epoch will be executed until the end of the
training. Otherwise, the selection process of unlabeled samples is
continued.

In conclusion, the KSS strategy can effectively mitigate the
impact of small samples on network stability. In addition, the
KSS strategy can greatly enrich the network features that can be
extracted by selecting unlabeled samples containing more feature
information for training, thus greatly improving the network
accuracy. This provides a new way to solve the problem of small
samples in hyperspectral image classification. In particular, the
‘‘unlabeled samples’’ here do not refer to samples without labels
in the true sense. The ‘‘unlabeled sample’’ here means that we did
not use its real label during training.

3. Experimentation and analysis

In order to verify the effectiveness of the proposed CEGAT
network, this paper conducts experiments on five open datasets.
All experiments were conducted in the same experimental envi-
ronment. Specifically, the experimental environment used in this
article is equipped with NVIDIA GeForce RTX 3090 GPU, and the
compilation software used is PyCharm. In addition, we use python
1.10.3 and python 3.8.13. In order to avoid the accident of the
experiment, all experiments were repeated for 20 times, and the
average result of the 20 repeated experiments was taken as the
final result.

3.1. HSI datasets

This paper verifies the effectiveness of CEGAT network on five
open datasets. The five data sets are Indian Pines (IN), Salinas
Valley (SV), Pavia University (UP), WHU-Hi-LongKou (LK) and
WHU-Hi-HanChuan (HC), as shown in Figs. 5–9. Among them,
IN has 200 consecutive spectral bands and includes 16 classes.
The number of pixels covered by the ground object is 10249. SV
also contains 16 categories, and these ground objects cover 54129
pixels. At the same time, SV has 204 consecutive bands. The
number of ground object categories and spectral bands included
in UP is slightly lower than SV and IN, with only 9 classes and
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Fig. 5. Description of IN dataset.

Fig. 6. Description of SV dataset.

Fig. 7. Description of UP dataset.

104 bands. The number of pixels covered by the ground objects
is 42776. LK and HC are data sets collected by Wuhan University.
LK has 270 continuous spectral bands, including 9 categories, and
its ground objects cover 204842 pixels. HC has a slightly higher
number of bands than LK, and it contains 274 bands. HC also
includes 16 classes, and the number of pixels covered by ground
objects is up to 257530.

Figs. 5–9 shows the dataset partition of the proposed method.
Different from conventional HSIC methods, the training set, val-
idation set and test set in this paper are dynamically changed

during the training process, and this change is not limited to a
specific category but is random. This is because the KSS is adopted
in this paper, and KSS selects samples based on the importance of
samples, not according to category. Therefore, the number of each
category in the final training set, validation set and test set of the
method proposed in this paper is not necessarily the same in each
training process. In particular, the original training set, validation
set, and test set in the figure refer to the distribution of the
dataset before training begins. The final training set, verification
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Fig. 8. Description of LK dataset.

Fig. 9. Description of HC dataset.

set and test set refer to the distribution of the data set after KSS
selects samples. ‘–’ indicates that the sample size is unknown.

3.2. Parameter settings

For fair comparison, the hyperparameter settings of all com-
parison methods are the same as those in the reference. For the
proposed CEGAT, we use an learning rate of 0.001 and sets the
epoch to 600. In addition, for different data sets, different sizes of
super pixel segmentation scales are set. Tables 1–5 show the im-
pact of different superpixel segmentation scales on classification
results on different datasets. Specifically, as can be seen from Ta-
ble 1, there is no significant difference between the classification
results of the segmentation scale with 50 and the classification
results of the segmentation scale with 100. However, for the seg-
mentation scale with 100, the floating point operations (FLOPs) of
the network have a greater advantage compared with that of the
segmentation scale with 50. In addition, on the IN dataset, when
the segmentation scale is greater than 100, although the FLOPs
of the network continue to decrease, the classification accuracy
also continues to decline. In this paper, the scale of superpixel
segmentation on IN data set is set to 100. For other datasets, the
scale of superpixel segmentation is different from that of the IN
dataset. This is because the resolution of other datasets is much
higher than IN, which increases the computational complexity of
the network. Therefore, the segmentation scale is set relatively
larger on other datasets. Finally, the scale of superpixel segmen-
tation on SV, UP, LK, and HC is set to 500. The reason is that when
the segmentation scale is 500, it has better classification accuracy
and lower network computational complexity compared to other
segmentation scales.

Finally, in order to further improve the classification perfor-
mance, the number of iterations of the KSS strategy is explored.
As shown in Fig. 10, six experiments were conducted on each
dataset. Specifically, the number of iterations of the KSS strategy
is set to {5, 10, 15, 20, 25, 30}. The overall accuracy (OA), average
accuracy (AA) and Kappa coefficient (Kappa) of the six groups of
experiments are compared respectively. From the experimental
results, it can be found that there is a similar performance on all
data sets. That is, as the number of iterations of the KSS increases,
the three evaluation indicators show an upward trend and grad-
ually converge. Among them, the four data sets UP, SV, LK and
HC begin to converge when the number of iterations is about
20, while IN begins to converge when the number of iterations
is about 25. This is because the total number of samples in the
IN dataset is small, but the number of categories is relatively
large, which makes the amount of feature information available
for classification less. Therefore, more iteration times are required
for IN data set to improve classification performance. In order to
facilitate subsequent experiments, the number of iterations of the
KSS strategy is set to 20.

3.3. Performance analysis of proposed modules

3.3.1. Ablation experiments
In this part, some ablation experiments were performed on

the modules proposed in this paper on five data sets to verify
their effectiveness. Take OA as the evaluation index. In addition,
all experiments used the same number of training samples on the
same dataset. Specifically, on the IN dataset, 3% of the samples are
used for training (when using KSS, the training samples consist
of 1% of the original training samples and 2% of the samples
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Table 1
Effects of different superpixel segmentation scales on classification on the IN dataset.
IN

Scale 50 100 200 300 400

OA 98.41(0.0034) 98.39(0.0041) 98.07(0.0025) 97.97(0.0059) 97.04(0.0047)
AA 98.33(0.0061) 98.93(0.0124) 98.22(0.0036) 98.03(0.0068) 97.94(0.0043)
KAPPA 98.16(0.0038) 98.16(0.0047) 97.81(0.0029) 97.69(0.0067) 96.64(0.0053)
FLOPs 1280.31M 1154.15M 1128.81M 1125.41M 1120.87M

Table 2
Effects of different superpixel segmentation scales on classification on the SV dataset.
SV

Scale 300 400 500 600 700

OA 98.37(0.0075) 97.86(0.0051) 99.18(0.0029) 98.76(0.0041) 98.28(0.0038)
AA 99.09(0.0044) 98.71(0.0034) 99.47(0.0016) 99.25(0.0014) 99.06(0.0022)
KAPPA 98.19(0.0084) 97.62(0.0056) 99.08(0.0033) 98.62(0.0045) 98.08(0.0043)
FLOPs 6031.76M 5975.23M 5951.37M 5936.84M 5928.06M

Table 3
Effects of different superpixel segmentation scales on classification on the UP dataset.
UP

Scale 300 400 500 600 700

OA 98.95(0.0078) 99.07(0.0039) 99.20(0.0035) 99.11(0.0037) 98.96(0.0042)
AA 98.19(0.0169) 98.60(0.0068) 98.83(0.0035) 98.60(0.0073) 98.21(0.0098)
KAPPA 98.62(0.0104) 98.76(0.0053) 98.90(0.0024) 98.82(0.0049) 98.62(0.0055)
FLOPs 11147.26M 10947.47M 10881.72M 10838.82M 10812.11M

Table 4
Effects of different superpixel segmentation scales on classification on the LK dataset.
LK

Scale 300 400 500 600 700

OA 99.65(0.0006) 99.63(0.0005) 99.55(0.0007) 99.67(0.0005) 99.63(0.0006)
AA 98.95(0.0022) 98.88(0.0022) 98.70(0.0025) 99.04(0.0016) 98.90(0.0027)
KAPPA 99.54(0.0008) 99.51(0.0007) 99.41(0.0009) 99.57(0.0007) 99.51(0.0008)
FLOPs 11854.06M 11624.06M 11554.34M 11515.10M 11472.11M

Table 5
Effects of different superpixel segmentation scales on classification on the HC dataset.
HC

Scale 300 400 500 600 700

OA 97.10(0.0045) 96.89(0.0053) 96.96(0.0036) 96.80(0.0040) 96.85(0.0036)
AA 93.08(0.0125) 92.92(0.0143) 93.10(0.0101) 92.89(0.0133) 93.06(0.0110)
KAPPA 96.61(0.0052) 96.56(0.0046) 96.44(0.0043) 96.25(0.0047) 96.43(0.0041)
FLOPs 21476.94M 20839.38M 20652.87M 20535.09M 20441.13M

Fig. 10. Experimental results of KSS strategy in different data sets (a) Experimental results on IN (b) Experimental results on SV; (c) Experimental results on UP; (d)
Experimental results on LK; (e) Experimental results on HC.
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Table 6
Comparison of different modules of CEGAT. (– means the module is not used in those experiments, √ means the module is used
in those experiments).
The number of the experiment 1 2 3 4 5

Modules
KSS – – √ √ √

EGAT – √ – √ √

SSCA √ √ √ – √

Data set

IN 95.79(0.0107) 97.09(0.0071) 97.87(0.0038) 82.07(0.0093) 98.14(0.0035)
SV 96.23(0.0083) 98.83(0.0038) 96.99(0.0047) 85.21(0.0067) 99.18(0.0029)
UP 96.77(0.0068) 98.56(0.0058) 97.85(0.0049) 86.96(0.0079) 99.20(0.0035)
LK 99.02(0.0013) 99.32(0.0011) 99.23(0.0010) 91.20(0.0027) 99.55(0.0075)
HC 91.57(0.0061) 96.31(0.0039) 93.90(0.0050) 87.40(0.0085) 96.96(0.0036)

1: CEGAT (only with SSCA).
2: CEGAT (with EGAT and SSCA).
3: CEGAT (with KSS and SSCA).
4: CEGAT (with KSS and EGAT).
5: Complete CEGAT.

selected by KSS through training iterations). On SV, 0.48% of
the samples are used for training (when using KSS, the training
samples consist of 0.1% of the original training samples and 0.38%
of the samples selected by KSS through training iterations). On
UP, 0.57% of the samples are used for training (when using KSS,
the training samples consist of 0.1% of the original training sam-
ples and 0.47% of the samples selected by KSS through training
iterations). On LK, 0.2% of the samples are used for training (when
using KSS, the training samples consist of 0.1% of the original
training samples and 0.1% of the samples selected by KSS through
training iterations). On HC, 0.18% of the samples are used for
training (when using KSS, the training samples consist of 0.1% of
the original training samples and 0.08% of the samples selected
by KSS through training iterations). The experimental results are
shown in Table 6.

First, the effectiveness of the KSS strategy is verified. Compare
Experiment 2 with Experiment 5, it can be seen that the classi-
fication accuracy of the complete CEGAT network is significantly
improved compared with the network without the KSS strategy
on the five datasets. Among them, on the LK dataset, the per-
formance improvement of the network classification using the
KSS strategy is slightly weaker than that of other datasets. This is
because LK dataset itself has more label samples, which provides
a strong guarantee for the network to extract sufficient feature
information. In addition, LK samples have fewer classes, which
reduces mutual interference between categories in the classifica-
tion process. These factors make the classification performance of
CEGAT network on the LK dataset not excessively depend on the
KSS strategy. Nevertheless, compared with CEGAT without KSS
strategy, the classification accuracy of CEGAT with KSS strategy
on the LK is still improved by 1.06%. These results fully prove the
effectiveness of the KSS strategy.

Then, the validity of EGAT module is verified. Specifically,
the results of Experiment 3: CEGAT (with KSS and SSCA) and
Experiment 5: Complete CEGAT were compared. Obviously, on
all data sets, the classification accuracy of CEGAT networks with
EGAT modules is improved to some extent compared with net-
works without EGAT modules. This shows that EGAT module can
effectively improve the classification performance of the network.

Finally, the effectiveness of SSCA module is discussed. The
results of Experiment 4: CEGAT (with KSS and EGAT) and Ex-
periment 5: Complete CEGAT were compared. It can be seen
that compared with the CEGAT network without SSCA, the clas-
sification performance of the CEGAT network with SSCA on all
datasets has been greatly improved. This is because when the
CEGAT network does not use SSCA, there is only a single branch of
GAT in the network, which weakens the discrimination ability of
the network. And on the GAT branch, SLIC is used to construct the
graph structure. Although this can reduce the number of network

Fig. 11. Comparison between conventional GAT and EGAT.

parameters, it will lose part of the feature information to a certain
extent. Therefore, when CEGAT network does not have pixel level
feature fusion extracted by SSCA, the network will show poor
classification performance. This not only proves that the SSCA
module can effectively improve the classification performance of
the CEGAT, but also just proves that the super pixel feature and
pixel feature are complementary.

In addition, the robustness of the proposed module has also
been verified in this section. By comparing 1: CEGAT (only with
SSCA) with 2: CEGAT (with EGAT and SSCA), and comparing
3: CEGAT (with KSS and SSCA) with 5: Complete CEGAT. From
the results, it can be seen that EGAT can not only improve the
performance of the network when KSS and SSCA are used, but
also stably improve the performance of the network when only
SSCA is used. Obviously, this indicates that the EGAT proposed
in this article has good robustness. Similarly, by comparing 1:
CEGAT (only with SSCA) with 3: CEGAT (with KSS and SSCA),
and comparing 2: CEGAT (with EGAT and SSCA) with 5: Complete
CEGAT, it can be concluded that IAL also has good robustness.

3.3.2. Comparison experiments
In this part, the effectiveness of EGAT module is further veri-

fied. The classification performance of conventional GAT is com-
pared with that of the EGAT proposed in this paper, and the
experimental results are shown in Fig. 11. In order to ensure
fair comparison of the experiment, other experimental conditions
were kept unchanged and only GAT and EGAT were replaced in
the proposed network. The experimental results show that the
proposed EGAT module has obvious advantages on five datasets.
The reason is that EGAT can strengthen the network’s attention
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Fig. 12. Comparison between with and without AAP in SSCA.

to features on the basis of conventional GAT, enable the network
to extract more discriminative features, and weaken redundant
features that interfere with classification.

Furthermore, in order to explore the effect of pyramid pooling
layer (PPL) of the proposed SSCA on the classification results,
the complete SSCA module (SSCA module with pyramid pooling
layer), the SSCA module without the PPL, and the SSCA module
with only one layer of AAP are compared in Fig. 12. As can be seen
from Fig. 12, on five different data sets, the classification results
of the three methods all show that the classification accuracy
of the complete SSCA module is higher than that of the other
two methods. Comparing the complete SSCA module with the
SSCA module without the PPL, it can be seen that introducing
the PPL in SSCA is more beneficial to the classification results.
Comparing the complete SSCA module with the SSCA module
with only one layer of AAP, it can be seen that the use of PPL
in SSCA is more beneficial to the classification results than one
layer of AAP. This is because the PPL reduces the loss of feature
information compared to the one layer of AAP.

3.4. Comparison of different methods

In this part, the CEGAT is compared with seven recent HSIC
methods, including DBDA (Li et al., 2020), DBMA (Ma et al., 2019),
FDSSC (Wang et al., 2018), SSRN (Zhong et al., 2018), CEGCN (Liu
et al., 2021), FDGCN (Liu, Dong, Zhang, & Luo, 2022), WFCG (Dong
et al., 2022). Among them, DBDA, DBMA, FDSSC and SSRN are four
CNN based hyperspectral image classification methods, while the
other three methods are HSIC methods based on the combination
of GCN and CNN. Tables 7–11 shows the classification results
of all methods on different data sets. The evaluation indicators
adopted include OA, AA, KAPPA, parameter quantity and network
running time. In Tables 7–11, the best classification results are
bold. In addition, in order to further analyze the classification per-
formance of the proposed CEGAT network, this paper visualizes
the classification results of all methods, as shown in Figs. 13–17.

In general, the CEGAT has achieved the highest OA, AA and
KAPPA in five data sets. This proves that the proposed CEGAT
is more competitive than other methods in classification per-
formance. In addition, CEGAT also achieved the best results for
the classification accuracy of each category of different data sets.
This is due to the fact that CEGAT network removes redundant
spectral information of HSI at the very beginning, avoiding the
interference of irrelevant information on classification. Not only
that, CEGAT also uses EGAT module and SSCA to increase feature

differentiation and enhance the discrimination of important fea-
tures. At the same time, the use of the KSS strategy increases the
feature information that can be extracted by the network. The
CEGAT not only achieves the highest classification accuracy on all
data sets, but also has the least number of network parameters,
which saves the hardware memory and provides the possibility
for its application to relevant practical applications.

Specifically, CEGAT achieves the best classification perfor-
mance on IN dataset. Among other methods, compared with the
method only based on CNN, the HSIC method based on GCN and
CNN has certain advantages. In the HSIC method based on the
combination of GCN and CNN, CEGCN and WFCG have greater
advantages than FDGCN. This phenomenon also occurs in several
other data sets. This is because both CEGCN and WFCG use the
method of fusion of super pixel level features and pixel level fea-
tures to classify. The CEGAT proposed in this paper also uses this
method. In contrast, CEGAT removes the redundant information
of the original data before extracting the super pixel level features
and pixel level features, which makes the classification stage
smoother. In addition, CEGAT can achieve the best classification
performance on all datasets by using fewer label samples. This is
because the proposed KSS strategy can select unlabeled samples
with more information in the validation set for training. This
not only saves the cost of labeling, but also effectively alleviates
the problem of small samples and improves the classification
accuracy of the network.

It can be seen from Figs. 13–17 that on five data sets, com-
pared with other methods, the classification map obtained by
the CEGAT is closer to the ground truth, with clearer boundaries
and less noise. This is because the KSS strategy adds unlabeled
samples that are difficult to distinguish in the verification set
to the training set through training iteration, which increases
the amount of feature information of training samples. At the
same time, CEGAT fuses the graph features at the super pixel
level with the spatial spectral features at the pixel level through
two attention modules, EGAT and SSCA. These reasons reduce
the interference between different classes in the dataset and
make the classification smoother. Therefore, CEGAT can obtain
the classification result map closer to the ground truth.

In order to compare the classification performance of different
methods more intuitively, a T-distributed stochastic neighbor
embedding (T-SNE) (Van der Maaten & Hinton, 2008) method is
utilized on IN and UP datasets to visualize the feature maps of
the proposed method and the four more competitive methods.
The experimental results are shown in Figs. 18–19. In particular,
these four methods include two CNN based methods, i.e., DBDA
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Fig. 13. Classification maps on IN. (a) Ground truth; (b) DBDA; (c) DBMA; (d) FDSSC; (e) SSRN; (f) CEGCN; (g) FDGC; (h) WFCG; (i) CEGAT.

Fig. 14. Classification maps on SV. (a) Ground truth; (b) DBDA; (c) DBMA; (d) FDSSC; (e) SSRN; (f) CEGCN; (g) FDGC; (h) WFCG; (i) CEGAT.
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Table 7
Classification results on IN.
Methods DBDA DBMA FDSSC SSRN CEGCN FDGCN WFCG CEGAT

Label samples 310(3%) 310(3%) 310(3%) 310(3%) 310(3%) 310(3%) 310(3%) 110(1%)
Unlabel samples – – – – – – – 200(2%)

1 92.53(0.0659) 82.75(0.1360) 93.01(0.0868) 82.28(0.1509) 48.96(0.2788) 78.10(0.1723) 96.23(0.0186) 97.92(0.0230)
2 91.82(0.0657) 90.33(0.0333) 89.41(0.1061) 87.96(0.0301) 93.53(0.0295) 91.14(0.0289) 94.00(0.0240) 96.56(0.0152)
3 94.95(0.0327) 92.94(0.0620) 87.54(0.1254) 91.19(0.0264) 90.00(0.0570) 94.86(0.0374) 93.24(0.0314) 97.06(0.0253)
4 91.75(0.0413) 87.55(0.0670) 91.79(0.0543) 81.81(0.1014) 77.26(0.1377) 91.18(0.0668) 98.06(0.0177) 99.64(0.0087)
5 98.13(0.0146) 93.47(0.0835) 98.93(0.0162) 96.11(0.0476) 90.40(0.0600) 94.59(0.0330) 94.21(0.0438) 96.15(0.0394)
6 96.74(0.0235) 96.33(0.0256) 97.76(0.0265) 96.84(0.2894) 99.50(0.0037) 96.02(0.0237) 98.94(0.0091) 98.84(0.0076)
7 66.55(0.1726) 53.13(0.1744) 81.77(0.1946) 82.18(0.2235) 50.80(0.3178) 66.61(0.2558) 96.53(0.0676) 97.46(0.0472)
8 99.90(0.0006) 99.82(0.0035) 99.95(0.0013) 98.31(0.0145) 99.93(0.0014) 99.61(0.0080) 99.78(0.0040) 99.97(0.0011)
9 72.18(0.1696) 60.75(0.2139) 64.07(0.1752) 76.89(0.2197) 26.45(0.1526) 73.18(0.2330) 92.77(0.1630) 98.38(0.0346)
10 89.73(0.0512) 86.47(0.1134) 90.69(0.0400) 83.70(0.0605) 93.17(0.0542) 87.62(0.0422) 94.40(0.0394) 97.45(0.0201)
11 96.17(0.0196) 92.14(0.0476) 94.39(0.0597) 87.43(0.0425) 97.58(0.0122) 93.27(0.2909) 97.69(0.1440) 98.39(0.1158)
12 90.01(0.0832) 82.79(0.1305) 95.69(0.0385) 85.55(0.0524) 94.37(0.0341) 87.43(0.0422) 93.21(0.0664) 98.85(0.0069)
13 94.98(0.0595) 94.99(0.0494) 97.74(0.0415) 95.67(0.0784) 99.79(0.0025) 93.37(0.0652) 98.00(0.0434) 99.24(0.0184)
14 97.68(0.0114) 96.87(0.0189) 96.38(0.0289) 96.91(0.0128) 98.59(0.0284) 98.14(0.0128) 99.49(0.0035) 99.82(0.0011)
15 91.25(0.0517) 84.40(0.0860) 92.97(0.0560) 87.14(0.0555) 86.99(0.0771) 94.02(0.0474) 98.70(0.0132) 99.86(0.0205)
16 89.73(0.1087) 91.30(0.1156) 94.75(0.0429) 93.80(0.0396) 90.84(0.0565) 72.51(0.0883) 96.74(0.0459) 97.13(0.0645)
OA 94.06(0.0184) 90.68(0.0304) 92.72(0.0369) 89.76(0.0150) 94.47(0.0164) 92.54(0.0134) 96.52(0.0092) 98.14(0.0035)
AA 90.68(0.0218) 86.63(0.0163) 91.68(0.0168) 88.99(0.0235) 83.63(0.0487) 88.16(0.0294) 96.41(0.0181) 98.20(0.0051)
KAPPA 93.24(0.0209) 89.38(0.0345) 91.71(0.0420) 88.30(0.0173) 93.68(0.0190) 91.48(0.0154) 96.03(0.0105) 97.88(0.0040)
Parameter 610.617k 606.101k 1277.490k 364.168k 166.370k 2449.700k 102.422k 99.213k
Train time 229.32 s 224.97 s 300.17 s 186.99 s 11.37 s 41.63 s 18.76 s 43.79 s
Test time 4.91 s 4.90 s 6.58 s 2.97 s 3.19 s 0.50 s 0.38 s 0.43 s

Table 8
Classification results on SV.
Methods DBDA DBMA FDSSC SSRN CEGCN FDGCN WFCG CEGAT

Label samples 262 (0.48%) 262 (0.48%) 262 (0.48%) 262 (0.48%) 262 (0.48%) 262 (0.48%) 262 (0.48%) 62 (0.1%)
Unlabel samples – – – – – – – 200 (0.38%)

1 99.98(0.0001) 99.99(0.0012) 100.0(0.0000) 99.28(0.0174) 99.97(0.0007) 99.90(0.0020) 99.59(0.0085) 100.0(0.0000)
2 99.97(0.0051) 99.97(0.0005) 100.0(0.0000) 99.62(0.0105) 100.0(0.0000) 99.60(0.0071) 99.96(0.0010) 100.0(0.0000)
3 97.94(0.0222) 97.94(0.0158) 95.46(0.0817) 94.54(0.0491) 99.75(0.0073) 99.20(0.0155) 99.58(0.0067) 99.96(0.0008)
4 93.52(0.0529) 91.92(0.0503) 96.56(0.0344) 93.97(0.1112) 99.19(0.0121) 90.68(0.0523) 98.82(0.0108) 99.63(0.0014)
5 97.94(0.0307) 98.56(0.0092) 99.39(0.0038) 98.57(0.0144) 98.10(0.0206) 98.18(0.0186) 98.63(0.0135) 99.46(0.0017)
6 99.94(0.0006) 98.47(0.0164) 99.89(0.0029) 99.85(0.0034) 99.85(0.0026) 99.01(0.0105) 99.87(0.0035) 99.12(0.0096)
7 98.49(0.0245) 98.53(0.0216) 99.92(0.0016) 99.90(0.0024) 99.99(0.0001) 99.20(0.0106) 99.98(0.0004) 100.0(0.0000)
8 93.52(0.0335) 93.66(0.0114) 91.85(0.0296) 82.73(0.0627) 97.28(0.1276) 98.41(0.0146) 97.41(0.0214) 98.72(0.0063)
9 99.30(0.0092) 99.46(0.0051) 99.67(0.0030) 99.63(0.0024) 100.0(0.0000) 99.67(0.0024) 99.96(0.0006) 100.0(0.0000)
10 98.52(0.0112) 95.97(0.0308) 97.29(0.0233) 95.69(0.0277) 96.16(0.0169) 97.83(0.0168) 97.76(0.0174) 98.45(0.0060)
11 95.56(0.0200) 95.90(0.0320) 95.49(0.0238) 95.29(0.0219) 99.25(0.0112) 91.55(0.0636) 99.37(0.0106) 99.34(0.0039)
12 99.43(0.0142) 98.99(0.0150) 98.69(0.0190) 98.27(0.0134) 100.0(0.0000) 94.58(0.0416) 99.99(0.0001) 100.0(0.0000)
13 99.59(0.0054) 99.39(0.0068) 99.85(0.0035) 98.04(0.0184) 99.87(0.0026) 90.46(0.0963) 99.26(0.0099) 99.49(0.0024)
14 96.36(0.0175) 95.99(0.0220) 96.73(0.0152) 96.65(0.0317) 98.76(0.0171) 89.22(0.0765) 97.13(0.0251) 99.83(0.0017)
15 86.52(0.1578) 92.03(0.0364) 90.25(0.0472) 81.64(0.0792) 99.13(0.0066) 90.02(0.0383) 97.61(0.0174) 97.49(0.0123)
16 99.88(0.0023) 99.15(0.0132) 99.66(0.0075) 99.63(0.0082) 99.43(0.0149) 99.26(0.0135) 99.55(0.0131) 100.0(0.0000)
OA 94.88(0.0544) 96.43(0.0069) 96.16(0.0099) 92.42(0.0196) 98.89(0.0024) 96.63(0.0082) 98.76(0.0060) 99.18(0.0029)
AA 97.28(0.0123) 97.25(0.0046) 97.54(0.0070) 95.83(0.0123) 99.17(0.0026) 96.05(0.0107) 99.03(0.0028) 99.47(0.0016)
KAPPA 94.33(0.0595) 96.03(0.0077) 95.72(0.0110) 91.55(0.0219) 98.76(0.0026) 96.26(0.0091) 98.62(0.0067) 99.08(0.0033)
Parameter 622.233k 617.717k 1251.490k 370.312k 166.890k 2449.700k 102.942k 99.213k
Train time 194.50 s 190.37 s 248.05 s 157.59 s 23.45 s 28.35 s 55.52 s 85.49 s
Test time 28.94 s 28.68 s 37.58 s 17.73 s 4.80 s 2.70 s 1.89 s 1.80 s

and FDSSC, and two methods based on the combination of GCN
and CNN, i.e., CEGCN and WFCG. It can be seen that in Fig. 18, for
the feature map of the proposed CEGAT method, different classes
can be separated from each other clearly and the same classes can
be clustered better. However, there will be many intersections
between features of different classes in other methods. And the
same conclusion can be drawn in Fig. 19. This fully proves that
the CEGAT can provide better classification performance of hyper-
spectral images. In addition, it can be seen from Figs. 18–19 that
the effect of the classification method based on the combination
of GCN and CNN is obviously better than that of the classification
method based on CNN.

Finally, in order to verify the effectiveness of the fusion of su-
per pixel level features and pixel level features, some experiments
are conducted on two more challenging datasets, as shown in
Figs. 20–21. From the local feature map of IN, we can see that

the local feature map obtained by CEGAT network without EGAT
branches is rough and far from the real local feature map. On the
contrary, the local feature map obtained by the complete CEGAT
network is smoother and closer to the real local feature map. The
same conclusion can be drawn from the local feature maps of HC
dataset. This is because SSCA is unable to model the correlation
of HSI internal structure, and EGAT directly acts on the graph to
make up for the deficiency of SSCA. It also proves that the super
pixel level features extracted by EGAT and the pixel level features
extracted by SSCA are complementary.

4. Conclusions

Due to the excellent feature extraction ability of CNN, it has
been widely used in the classification of hyperspectral images.
But the regular grid processing method of CNN makes it diffi-
cult to establish the internal association of hyperspectral image
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Table 9
Classification results on UP.
Methods DBDA DBMA FDSSC SSRN CEGCN FDGCN WFCG CEGAT

Label samples 248(0.57%) 248(0.57%) 248(0.57%) 248(0.57%) 248(0.57%) 248(0.57%) 248(0.57%) 48(0.1%)
Unlabel samples – – – – – – – 200(0.47%)

1 96.63(0.0199) 96.49(0.0093) 98.69(0.0162) 97.76(0.0131) 99.07(0.0067) 87.76(0.0574) 98.52(0.0121) 98.84(0.0030)
2 99.37(0.0050) 98.93(0.0049) 99.23(0.0034) 98.34(0.0039) 99.96(0.0003) 99.02(0.0049) 99.95(0.0006) 100.0(0.0000)
3 87.39(0.1637) 88.97(0.0811) 88.58(0.0822) 78.55(0.1052) 97.48(0.0323) 94.75(0.0422) 96.88(0.0355) 98.92(0.0293)
4 96.44(0.0195) 96.71(0.0177) 99.47(0.0044) 99.67(0.0043) 95.07(0.0230) 79.42(0.0632) 95.35(0.0218) 96.44(0.0115)
5 97.78(0.0355) 98.35(0.0189) 99.84(0.0014) 99.96(0.0003) 99.95(0.0009) 95.01(0.0401) 99.97(0.0004) 100.0(0.000)
6 96.88(0.0565) 98.67(0.0124) 98.71(0.0106) 96.82(0.0236) 99.97(0.0005) 96.19(0.0236) 99.96(0.0007) 100.0(0.000)
7 94.89(0.0409) 97.71(0.0309) 99.07(0.0147) 87.17(0.1647) 98.39(0.0196) 98.36(0.0367) 99.83(0.0022) 98.48(0.0200)
8 86.73(0.0683) 88.34(0.0561) 88.43(0.0427) 86.26(0.0650) 97.11(0.0184) 79.80(0.0366) 98.58(0.0143) 96.81(0.0236)
9 98.07(0.0147) 95.43(0.0340) 98.82(0.0096) 98.90(0.0105) 96.80(0.0574) 75.18(0.1402) 95.64(0.0618) 99.57(0.0045)
OA 96.02(0.0181) 96.71(0.0058) 97.54(0.0058) 95.34(0.177) 98.99(0.0029) 92.45(0.0147) 99.03(0.0033) 99.20(0.0035)
AA 94.91(0.0198) 95.51(0.0096) 96.76(0.0101) 93.71(0.0251) 98.20(0.0089) 89.50(0.0167) 98.72(0.0076) 98.83(0.0035)
KAPPA 94.74(0.0237) 95.63(0.0078) 96.74(0.0076) 93.82(0.0231) 98.66(0.0039) 89.98(0.0195) 98.72(0.0043) 98.90(0.0024)
Parameter 325.202k 320.686k 651.063k 216.537k 152.857k 1987.690k 99.357k 97.848k
Train time 134.45 s 129.41 s 161.71 s 113.55 s 36.74 s 27.68 s 97.40 s 148.26 s
Test time 13.69 s 13.74 s 17.32 s 10.30 s 6.44 s 2.09 s 2.99 s 3.6 s

Table 10
Classification results on LK.
Methods DBDA DBMA FDSSC SSRN CEGCN FDGCN WFCG CEGAT

Label samples 405(0.2%) 405(0.2%) 405(0.2%) 405(0.2%) 405(0.2%) 405(0.2%) 405(0.2%) 205(0.1%)
Unlabel samples – – – – – – – 200(0.1%)

1 99.54(0.0037) 99.37(0.0054) 99.64(0.0029) 99.43(0.0025) 99.77(0.0018) 99.34(0.0052) 99.89(0.0007) 99.93(0.0003)
2 96.08(0.0193) 93.24(0.0409) 95.27(0.0328) 93.80(0.0399) 98.30(0.0166) 96.44(0.0433) 98.45(0.0175) 99.84(0.0035)
3 94.45(0.0452) 97.69(0.0373) 99.16(0.0158) 97.48(0.0276) 91.01(0.0580) 96.69(0.0250) 94.01(0.0448) 99.30(0.0123)
4 97.82(0.0098) 98.11(0.0249) 99.21(0.0003) 98.11(0.0074) 99.50(0.0028) 97.38(0.0156) 99.35(0.0020) 99.72(0.0011)
5 91.84(0.0675) 93.94(0.0485) 95.45(0.0032) 90.44(0.1068) 94.41(0.0277) 95.52(0.0349) 93.25(0.0551) 98.81(0.0102)
6 99.25(0.0090) 99.60(0.0028) 99.82(0.0351) 99.70(0.0028) 99.02(0.0173) 98.70(0.0105) 98.81(0.0175) 100.0(0.0000)
7 99.56(0.0025) 99.70(0.0027) 99.80(0.0017) 99.77(0.0023) 99.92(0.0009) 99.13(0.0051) 99.96(0.0003) 99.94(0.0004)
8 87.63(0.0537) 89.35(0.0422) 93.24(0.0350) 92.10(0.0408) 94.06(0.0263) 86.64(0.0362) 95.50(0.0191) 94.84(0.0180)
9 91.87(0.1689) 84.99(0.0678) 93.97(0.0234) 91.84(0.991) 87.85(0.0497) 83.93(0.0377) 90.75(0.0414) 95.97(0.0192)
OA 97.48(0.0099) 97.96(0.0096) 98.91(0.0025) 98.19(0.0086) 98.91(0.0036) 97.54(0.0056) 99.02(0.0023) 99.55(0.0007)
AA 94.23(0.0190) 95.12(0.0155) 96.28(0.0099) 95.85(0.0273) 95.99(0.0148) 94.86(0.0083) 96.66(0.0100) 98.70(0.0025)
KAPPA 96.69(0.0129) 97.32(0.0128) 98.57(0.0033) 97.62(0.0113) 98.57(0.0048) 96.76(0.0075) 98.71(0.0030) 99.41(0.0009)
Parameter 813.050k 808.534k 1647.063k 471.513k 174.567k 1987.609k 111.067k 97.848k
Train time 371.70 s 366.94 s 405.81 s 289.62 s 47.09 s 45.90 s 115.22 s 151.99 s
Test time 135.48 s 135.14 s 126.06 s 81.80 s 8.68 s 10.25 s 3.40 s 4.66 s

Table 11
Classification results on HC.
Methods DBDA DBMA FDSSC SSRN CEGCN FDGCN WFCG CEGAT

Label samples 457 (0.18%) 457 (0.18%) 457 (0.18%) 457 (0.18%) 457 (0.18%) 457 (0.18%) 457 (0.18%) 257 (0.1%)
Unlabel samples – – – – – – – 200 (0.08%)

1 88.35(0.0446) 86.07(0.0841) 91.97(0.0603) 83.61(0.0784) 99.39(0.0023) 95.26(0.0156) 98.07(0.0076) 98.65(0.0074)
2 75.10(0.0907) 77.56(0.0765) 79.97(0.0882) 70.48(0.1189) 93.54(0.0225) 92.07(0.0249) 92.27(0.0333) 95.52(0.0189)
3 81.19(0.1039) 77.43(0.1930) 81.20(0.1384) 67.94(0.0911) 94.80(0.0391) 92.54(0.0280) 93.90(0.0448) 95.74(0.0240)
4 94.39(0.0497) 94.67(0.0501) 94.45(0.0367) 84.18(0.1684) 97.12(0.0174) 95.90(0.0521) 94.27(0.0331) 96.54(0.0017)
5 49.41(0.2408) 45.54(0.2070) 38.69(0.0392) 25.08(0.2734) 80.58(0.1590) 71.49(0.1526) 91.66(0.1144) 92.28(0.0721)
6 40.78(0.2277) 55.60(0.3003) 55.99(0.2997) 43.84(0.3002) 68.85(0.1019) 76.26(0.0838) 69.95(0.1091) 94.67(0.0034)
7 78.15(0.1375) 71.53(0.1655) 67.84(0.1066) 61.96(0.2118) 94.99(0.0164) 85.76(0.0743) 92.18(0.0497) 95.05(0.0300)
8 79.76(0.1155) 84.50(0.0911) 88.38(0.0786) 76.14(0.0693) 90.09(0.0326) 87.21(0.0514) 90.91(0.0318) 95.14(0.0270)
9 68.92(0.1443) 73.40(0.0802) 76.90(0.0533) 66.12(0.1215) 84.94(0.0613) 82.47(0.0549) 89.37(0.0348) 93.45(0.0431)
10 87.10(0.1708) 99.03(0.0148) 96.41(0.0789) 86.37(0.1392) 95.07(0.0350) 97.59(0.0277) 95.18(0.0343) 97.76(0.0110)
11 74.81(0.2543) 76.29(0.1430) 83.98(0.088) 73.22(0.1495) 98.90(0.0081) 92.33(0.0240) 98.30(0.0147) 99.20(0.0059)
12 56.73(0.3579) 75.77(0.2721) 61.92(0.3261) 45.18(0.3039) 66.98(0.1503) 80.28(0.0816) 87.00(0.1028) 97.71(0.0211)
13 60.60(0.1740) 55.73(0.0854) 66.01(0.1396) 54.80(0.1274) 73.33(0.0774) 75.91(0.0880) 72.84(0.0521) 85.19(0.0704)
14 72.30(0.0862) 84.43(0.0322) 79.40(0.0540) 72.54(0.0862) 92.23(0.0246) 91.02(0.0298) 90.05(0.0308) 95.22(0.0128)
15 81.06(0.1928) 75.63(0.1468) 75.40(0.2790) 66.45(0.3745) 30.89(0.1193) 76.23(0.1958) 40.93(0.1562) 60.09(0.1460)
16 96.51(0.0427) 97.61(0.0325) 99.18(0.0095) 95.49(0.0508) 99.86(0.0010) 99.21(0.0056) 99.56(0.0028) 99.63(0.0021)

OA 82.35(0.0583) 84.00(0.0623) 87.47(0.0252) 78.48(0.0600) 94.46(0.0053) 92.89(0.0061) 94.28(0.0061) 96.96(0.0036)
AA 74.01(0.088) 76.92(0.0773) 77.36(0.0647) 67.08(0.0746) 85.10(0.019) 86.97(0.0154) 87.28(0.0189) 93.10(0.0101)
KAPPA 79.23(0.0691) 81.18(0.0739) 85.31(0.0297) 74.67(0.0709) 93.51(0.0062) 91.67(0.0072) 93.31(0.0071) 96.44(0.0043)
Parameter 825.513k 820.997k 1671.490k 477.832k 175.990k 2449.700k 112.042k 99.213k
Train time 561.33 s 455.03 s 566.82 s 354.99 s 74.28 s 50.91 s 201.20 s 262.09 s
Test time 175.74 s 175.06 s 233.66 s 107.87 s 9.88 s 13.53 s 6.32 s 10.10 s

coverage objects. In this paper, taking full advantage of CNNs
and GCNs, a dual branch CEGAT network is proposed. First, a
LD_SICS module is designed to eliminate the spectral redundancy

information in the original data, and the feature information is
mapped to the low dimensional space. Then, on the GAT branch,
the structure of the super pixel encoding graph is utilized. An
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Fig. 15. Classification maps on UP. (a) Ground truth; (b) DBDA; (c) DBMA; (d) FDSSC; (e) SSRN; (f) CEGCN; (g) FDGC; (h) WFCG; (i) CEGAT.

Fig. 16. Classification maps on LK. (a) Ground truth; (b) DBDA; (c) DBMA; (d) FDSSC; (e) SSRN; (f) CEGCN; (g) FDGC; (h) WFCG; (i) CEGAT.

EGAT module is constructed to enhance the network’s ability
to focus on node features. On the CNN branch, a SSCA module
is proposed to extract more discriminative pixel level spatial
spectral features and reduce the computational complexity of the

network. Then, the features extracted from the two branches are
fused for classification. Finally, in order to mitigate the impact
of small samples on the network, a KSS strategy is proposed.
The KSS strategy increases the amount of feature information of
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Fig. 17. Classification maps on HC. (a) Ground truth; (b) DBDA; (c) DBMA; (d) FDSSC; (e) SSRN; (f) CEGCN; (g) FDGC; (h) WFCG; (i) CEGAT.

Fig. 18. Feature visualization of different methods on IN. (a)DBDA; (b) FDSSC; (c) CEGCN; (d)WFCG; (e) CEGAT.

Fig. 19. Feature visualization of different methods on UP. (a) DBDA; (b) FDSSC; (c) CEGCN; (d) WFCG; (e) CEGAT.
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Fig. 20. Visualization of the local feature map of IN. (a) The local feature map of the 2nd class obtained by CEGAT network only removing EGAT branches; (b) The
local feature map of the 2nd class obtained by the complete CEGAT network; (c) Local feature map of the real 2nd class; (d) The local feature map of the 10th
class obtained by CEGAT network only removing EGAT branches; (e) The local feature map of the 10th class obtained by the complete CEGAT network; (f) Real local
feature map of the 10th class.

Fig. 21. Visualization of the local feature map of HC. (a) The local feature map
of the 8th class obtained by CEGAT network only removing EGAT branches; (b)
The local feature map of the 8th class obtained by the complete CEGAT network;
(c) Local feature map of the real 8th class; (d) The local feature map of the 11th
class obtained by CEGAT network only removing EGAT branches; (e) The local
feature map of the 11th class obtained by the complete CEGAT network; (f) Real
local feature map of the 11th class.

training samples by selecting unlabeled samples that are diffi-
cult to distinguish and adding them to the training set, so as
to alleviate the problem of small samples. A large number of
experimental results show that the CEGAT can achieve better
classification performance than some state-of-the-art methods

with few samples. In future work, we will further reduce the com-
putational complexity of the network to realize the lightweight
of the network. Moreover, considering that there may be edge
feature dependencies between super-pixel blocks with different
scales, this may be beneficial for HSIC. Therefore, in future work
we will consider introducing multi-scale superpixels as input.
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